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Abstract

Modularity analysis offers a route to better understand the organization of cellular biochemical networks as well as to derive
practically useful, simplified models of these complex systems. While there is general agreement regarding the qualitative
properties of a biochemical module, there is no clear consensus on the quantitative criteria that may be used to
systematically derive these modules. In this work, we investigate cyclical interactions as the defining characteristic of a
biochemical module. We utilize a round trip distance metric, termed Shortest Retroactive Distance (ShReD), to characterize
the retroactive connectivity between any two reactions in a biochemical network and to group together network
components that mutually influence each other. We evaluate the metric on two types of networks that feature feedback
interactions: (i) epidermal growth factor receptor (EGFR) signaling and (ii) liver metabolism supporting drug transformation.
For both networks, the ShReD partitions found hierarchically arranged modules that confirm biological intuition. In addition,
the partitions also revealed modules that are less intuitive. In particular, ShReD-based partition of the metabolic network
identified a ‘redox’ module that couples reactions of glucose, pyruvate, lipid and drug metabolism through shared
production and consumption of NADPH. Our results suggest that retroactive interactions arising from feedback loops and
metabolic cycles significantly contribute to the modularity of biochemical networks. For metabolic networks, cofactors play
an important role as allosteric effectors that mediate the retroactive interactions.
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Introduction

Hierarchical modularity has emerged as an organizational

principle of biochemical networks, where larger less cohesive

clusters of network components (e.g. metabolic enzymes or signaling

molecules) comprise functionally distinct sub-clusters [1,2]. For

example, Ihmels and coworkers analyzed the co-expression patterns

of metabolic genes in Saccharomyces cerevisiae to find coordinated

regulation of individual pathways as well as higher-order functions

such as biosynthesis and stress response that require multiple feeder

pathways [3]. Hierarchical organization was also observed by

Gutteridge and coworkers for metabolic regulatory networks, where

hub metabolites regulating many enzymes connect to modules of

spoke metabolites that are chemically similar and/or regulate

functionally related enzymes [4].

In recent years, observations on modularity have prompted

metabolic engineers and synthetic biologists to consider whole

pathways, rather than individual genes, as modular building units

for cellular design [5]. An emerging design rule is to assemble and

express a coherent set of genes that encode the desired

biochemical pathway along with regulatory mechanisms that

modulate the activity of the pathway [6]. Modularity analysis also

offers a route to build practically useful, simplified models of

complex biological systems. The size and complexity of biochem-

ical networks reconstructed from genome databases has greatly

increased over the years [7,8,9], rendering the estimation of kinetic

or regulatory parameters either impractical or outright infeasible.

In this regard, the modularity of a biochemical network should

allow the system to be partitioned into minimally interdependent

parts, enabling systematic derivation of coarse-grained, yet

comprehensive models. Such coarse-grained models could greatly

simplify the parameter estimation problem by substituting detailed

reaction kinetics with less detailed module kinetics [10].

While there is general agreement that a biochemical module

should represent a group of connected network components, and

that the arrangement of modules in the network is hierarchical,

there is less consensus on the criteria that should be used

to systematically extract biologically meaningful modules

[11,12,13,14]. One recent argument was to focus on cyclical, or

‘retroactive,’ interactions between network components, as

opposed to simple connectivity [15]. Biochemical pathways

operate with direction, where upstream components (e.g. concen-

tration of reactants) influence downstream components (e.g.

concentration of products). In the case where a downstream

component also influences an upstream component (e.g. via a

feedback regulatory mechanism), the two components participate

in a cycle and thus interact retroactively. Placing such components

into the same module reduces the interdependence between

different modules, consistent with the intuitive definition of a

biological module. Indeed, metabolic cycles and feedback loops
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have been shown to confer robustness [16] by isolating external

perturbations and attenuating their propagation through the entire

network [17].

In this paper, we extend the concept of retroactivity to account

for cyclical interactions spanning distant parts of a biochemical

network as exemplified by feedback loops of signaling and

metabolic pathways. In earlier work [6], retroactivity was only

considered for interactions between nearest neighbors in a

network. To investigate hierarchy, we adopted Newman’s

algorithm for community detection [18] to successively partition

a network into modules containing cyclical interactions based on a

round trip distance metric, which we call Shortest Retroactive

Distance (ShReD). Applied to test models of a signaling network

[19] (Figure 1) and a metabolic network (Figure 2), the ShReD-

based partitions produced hierarchically arranged modules that

confirm biological knowledge. In addition, the partitions also

revealed modules that are less intuitive. For the metabolic

network, we also examined the role of allosteric regulators and

cofactors as network elements that determine the number of

cyclical interactions and the hierarchical depth of modules.

Results

Effect of Retroactive Interactions on Modularity:
Signaling Network

To examine the effect of cyclical, i.e. retroactive, interactions on

modularity, we compared the partitions of the EGFR signaling

network obtained using Newman’s connectivity (Figure 3a) and

the ShReD metric (Figure 3b). Several qualitative similarities

between the two partitions are evident. In both partitions, modules

that possess a large fraction of reactions from phosphatidylinositol

polyphosphate (PIP) signaling coupled to either intracellular Ca2+

signaling (CAS) or small guanosine triphosphatase (SGTP) were

identified. Quantitatively, both partitions reach a hierarchical

depth of 6 and become more homogeneous closer to the terminal

nodes of the partition tree. From the root to terminal nodes, the

canonical group compositions of the modules (represented by the

pie colors) trend toward a single, dominant group (Figure 4a). At

the terminal nodes (height zero), the fraction of reactions in a

module belonging to a single canonical group, on average, exceeds

80% for both Newman and ShReD partitions.

There are also notable differences between the two partitions.

While both partitions extract modules predominantly consisting of

G-Protein coupled Receptor (GPCR) activation reactions, the

ShReD partition identifies greater hierarchy stemming from those

modules. In the Newman partition, there are several terminal leaf

nodes that predominantly comprise Mitogen Activated Protein

Kinase (MAPK) reactions. Analogous terminal nodes are not

present in the ShReD partition. The ShReD partition yields a

large terminal node consisting of 99 reactions (Supplementary

Figure S1b, ID: 22219), whereas the largest terminal node of the

Newman partition consists of 36 reactions (Figure S1a, ID: 22202).

The largest terminal node in the Newman partition (ID: 22202)

predominantly comprises GPCR transactivation reactions, where-

as the largest terminal node in the ShReD partition (ID: 22219)

comprises several signaling functions, including MAPK cascade,

endocytosis, and cell cycle. Another notable difference is that while

the average number of cycles in a module decreases with

increasing depth for both partitions, a larger number of cycles

are preserved in the ShReD partition at greater depths (Figure 4b).

Effect of Retroactive Interactions on Modularity:
Metabolic Network

We next compared the Newman (Figure 5a) and ShReD

partitions (Figure 5b) for the liver metabolic network, complete

with regulatory edges and cofactors. As was the case for the EGFR

network, both partitions lead to modules that generally increase in

homogeneity from the root node to the terminal nodes (Figure 6).

However, unlike the EGFR network, the arrangement and

compositions of the two partitions are drastically different

(Figure 5). In contrast to the Newman partition, the ShReD

partition generates modules with hierarchical depth, similar to the

GPCR dominated modules of the EGFR network. In the case of

the metabolic network, hierarchical depth was greatest for

modules comprising reactions in and around glycolysis (GLYCO).

Moreover, the terminal node modules of the ShReD partition

reach greater homogeneity compared to the Newman partition

(Figure 6, Figure S2).

Impact of Allosteric Regulation
The impact of metabolic regulation on ShReD-based modu-

larity was investigated by comparing the partitions for the

metabolic network model with (Figure 5b) and without the

allosteric interactions (Figure 7a). The two models yield qualita-

tively similar hierarchical partitions with subtle differences in the

placement of reactions into modules (Dataset S1). These

differences include the placement of reactions coupled to the

pyruvate kinase reaction, which is subject to a high degree of

allosteric regulation relative to other reactions in the network. The

quantitative impact of regulation is observed by comparing the

number of ShReDs present in the network prior to the partition.

At depth zero, there are approximately 250 additional ShReDs in

the model with allosteric regulation compared to the model

without regulation (Figure 8a). However, there is no obvious

difference in the number of ShReDs between the two models at

greater depths. There is also no obvious difference in the average

ShReD at most depths, with the exception of depth zero, where

the average ShReD is approximately 7% shorter for the model

with allosteric regulation compared to the model without

regulation (Figure 8b).

Author Summary

Mathematical models are powerful tools to understand
and predict the behavior of complex systems. However,
the complexity presents many challenges in developing
such models. In the case of a biological cell, a fully detailed
and comprehensive model of a major function such as
signaling and metabolism remains out of reach, due to the
very large number of interdependent biochemical reac-
tions that are required to carry out the function. In this
regard, one practical approach is to develop simplified
models that nevertheless preserve the essential features
of the cell as a complex system by better understanding
the chemical organization of the cell, or the layout of
the biochemical network. In this work, we describe a
computational method to systematically identify closely
interacting groups of biochemical reactions by recognizing
the modular hierarchy inherent in biochemical networks.
We focus on cyclical interactions based on the rationale
that reactions that mutually influence each other belong in
the same group. We demonstrate our method on a
signaling and metabolic network and show that the results
confirm biological intuition as well as provide new insights
into the coordination of biochemical pathways. Prospec-
tively, our modularization method could be used to
systematically derive simplified and practically useful
models of complex biological networks.

Biochemical Network Modules
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Impact of Cofactors
We next assessed the impact of cofactors such as ATP, NADH,

and NADPH on ShReD-based modularity by comparing the

partition generated for the complete metabolic model (Figure 5b)

to the partition for a partial model with regulatory edges, but

lacking any interactions resulting from cofactors (Figure 7b).

Qualitatively, the partitions reveal similar canonical groupings.

Both partitions identify modules predominantly characterized by

glucose metabolism (GLYCO) and modules predominantly

characterized by amino acid metabolism (AA). Both partitions

also group together reactions of the TCA cycle (TCA), urea cycle

(UREA) and pyruvate metabolism (PYRU). A major difference

between the two partitions involves the reactions of lipid

metabolism (LIPID) and detoxification (DETOX). For the

complete model, the ShReD partition identifies a module

consisting of reactions from LIPID, DETOX, GLYCO, and

PYRU (Figures 5b and 9b: ID: 15995), whereas no analogous

module is identified for the model without cofactors. The reactions

of module 15995 either produce or consume NADPH to support

detoxification and lipid synthesis (Figure 9b). Quantitatively, the

number of ShReDs trends lower when the cofactors are absent,

with the largest difference observed at zero depth (Figure 10a).

Conversely, the average ShReD of a module is generally larger

when the cofactors are absent, with the largest difference again

observed at zero depth (Figure 10b). At greater depths (.3), the

average ShReD plateaus to a value between 2 and 3 edges for both

models.

Comparison with Local Retroactivity
For completeness sake, we compared the partitions based on

ShReD with partitions based on local, or nearest neighbor,

retroactivity. To obtain local retroactivity partitions, the size of

cycles was restricted to two edges, effectively eliminating all

retroactive paths involving non-neighboring vertices. Algorithmi-

Figure 1. Graph image of the signaling network. Each reaction in the network was a priori assigned to one of 11 canonical signaling pathways
as described in Methods. The pathway assignments are indicated by the color of the reaction vertex in the network. (NA: not assigned; SGTP: small
guanosine triphosphatase mediated signaling; PIP: phosphatidylinositol polyphosphate signaling; REC: recycling; ENDO: endocytosis; DEG:
degradation; CELLC: cell cycle; MAPK: mitogen-activated protein kinase cascade; TRANS: transcription; CAS: Ca2+ signaling; GPCR: G-protein coupled
receptor mediated signaling; ERBB: erythroblastic leukemia viral oncogene homolog receptor signaling).
doi:10.1371/journal.pcbi.1002262.g001

Biochemical Network Modules
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cally, ShReDij was set to infinity, if ShReDij was greater than 2.

Biochemically, a locally retroactive interaction represented either a

reversible reaction catalyzed by a single enzyme or two irreversible

reactions with opposite stoichiometry. For all cases, including the

EGFR signaling network as well as various versions of the

hepatocyte metabolic network, partitions based on local retroac-

tivity failed to generate any modules.

Discussion

In this paper, we introduce the use of ShReD as a round trip

distance metric, which can be combined with a partition algorithm

(adapted from Newman’s earlier work on community detection) to

systematically identify biochemical reaction modules that feature

cyclical interactions. The notion of grouping together network

components based on ‘‘retroactivity’’ was first proposed by Saez-

Rodriguez and coworkers, who hypothesized that a strictly down-

stream component should have little impact on the activity of an

upstream component unless there is a feedback or retroactive

relationship [15]. It has been suggested that such feedback

relationships contribute to robustness with respect to external

perturbation, notably in signal transduction networks [16]. The

ShReD metric accounts for cyclical interactions that span multiple

reaction steps, and thus significantly extends on the prior work on

retroactivity, which focused on local interactions between neighboring

components. Previously, (shortest) path lengths between network

components have been used to identify reaction modules by clustering,

but without consideration of directionality and retroactivity [20].

To evaluate the performance of ShReD as a module-detection

metric, we performed two sets of comparisons. One set of

comparisons involved the community detection algorithm pre-

sented by Newman, which also formed the basis for our

partitioning algorithm. Newman’s original algorithm partitioned

based on connectivity, and favored the placement of a pair of

network elements (vertices in the graph representation) into the

same module if the number of connections between the two

elements exceeded the expected (e.g. average) number of

connections assuming an equivalent network with edges placed

at random. The second set of comparisons involved the special

case of local feedback loops or cycles arising from reversible

reactions. The results of these comparisons were used to

investigate how multi-step signaling loops or metabolic cycles, as

opposed to conventional connectivity or reaction reversibility,

contribute to the modular organization of biochemical networks.

Figure 2. Graph image of the metabolic network. Each reaction in the network was a priori assigned to one of 10 textbook pathways as
described in Methods. The pathway assignments are indicated by the color of the reaction vertex in the network. (TRANS: transport; DETOX:
detoxification; GLYCO: glucose metabolism; PYRU: pyruvate metabolism; TCA: tca cycle; UREA: urea cycle; ROP: oxidative phosphorylation; LIPID: lipid
metabolism; AA: amino acid metabolism; KET: ketone body metabolism).
doi:10.1371/journal.pcbi.1002262.g002

Biochemical Network Modules
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Applied to a model network of EGFR signaling, the ShReD-

based partitions generated modules with a greater number of

cyclical interactions across all depths compared to Newman’s

connectivity-based partitions (Figure 4b), consistent with the

premise of the ShReD metric. Our results suggest that the total

number of cyclical interactions in a network or module at least

partially dictates the hierarchical depth of ShReD-based parti-

tions. The ShReD-based partitions of the EGFR model generated

one large terminal module with 99 reactions (Figure 3b, ID

22219), which could not be further modularized due to the

relatively small number of cycles (a total of 10) in the module

(,0.5 ShReDs per reaction). In contrast, the GPCR dominated

module (ID 22203) has 167 cycles and 774 ShReDs connecting

just 39 reactions (,20 ShReDs per reaction), and can be further

partitioned to generate 4 additional levels of hierarchy.

In the case of the liver metabolic network, which has a

substantially greater number of cycles (arising from allosteric

feedback loops) compared to the EGFR signaling network, the

difference between ShReD and Newman partitions is more

dramatic. ShRed partitions again lead to greater hierarchy,

reaching a depth of 7, whereas Newman’s partition only reaches

a depth of 3. The greater hierarchy achieved using the ShReD

metric is significant, because the partition algorithm is essentially

identical to Newman’s algorithm, i.e. the only difference is the

metric used to calculate the modularity score Q. For both metrics,

a module is further partitioned only if the Q score is positive after

the partition. Indeed, the scoring criterion based on the ShReD

metric is actually more stringent, because the algorithm performs

an additional test to ensure that the modules resulting from a

partition each has at least one cycle. In this regard, the greater

hierarchy generated by the ShReD (as opposed to the partition

algorithm) gives credence to the metric for being able to identify

hierarchical modules based on the preservation of cycles.

The retroactive interactions captured by ShReD include not

only reaction reversibility (as in previous work [15]), but also cycles

and feedback loops involving multiple reactions and allosteric

effectors. Feedback loops resulting from allosteric regulation

of an upstream enzyme by a downstream product represent an

important regulatory motif that is common to biochemical

networks. To examine the impact of feedback loops on

modularity, ShReD partitions were obtained for the metabolic

network with and without allosteric regulation. While qualitatively

similar, the partitions differed in the placement of highly regulated

reactions. For example, biochemistry textbooks generally associate

pyruvate kinase (PK) with glycolysis, where the enzyme catalyzes

the terminal step. The enzyme’s activity is subject to allosteric

regulation by several sugar phosphates produced upstream in

glycolysis. On the other hand, the enzyme’s product, pyruvate, is

highly connected to the TCA cycle and amino acid pathways

through anaplerosis and transamination reactions. When regula-

tory edges are absent, ShReD partitions place PK in one of the

terminal leaf nodes along with reactions of lipid metabolism,

pyruvate metabolism, the TCA cycle, oxidative phosphorylation

and ketone body synthesis (Figure 7a, ID: 15982). When

regulatory edges are present in the model, however, the partitions

place PK in a module dominated by reactions of sugar metabolism

(Figure 5b, ID 15939), consistent with textbook biochemistry. In

this regard, the ShReD metric captures the impact of both

stoichiometric connectivity and feedback regulation in determin-

ing modularity.

As many of the allosteric regulators were energy currency

metabolites, we also examined the partitions for a partial

metabolic model that lacks these cofactors. The resulting network

contains fewer ShReDs, presumably reflecting an overall decrease

in the total number of paths. Compared to the complete model,

the corresponding ShReDs (connecting the same reaction vertices)

of the partial model are ,30% longer, indicating that allosteric

feedback and other cofactor-dependent interactions more tightly

couple the reactions in the network. In the present study,

abstracting the metabolic network as a reaction-centric graph

Figure 3. Hierarchical partitions of EGFR signaling network. (A) Partitions obtained using Newman’s connectivity metric. The GPCR
dominated module (ID: 22202) has 36 reactions and 28 cycles. (B) Partitions obtained using the ShReD metric. The GPCR dominated module (ID:
22203) has 39 reactions and 167 cycles. The terminal node (ID: 22219) has 99 reactions, but only 10 cycles.
doi:10.1371/journal.pcbi.1002262.g003

Biochemical Network Modules
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greatly facilitated the inclusion of cofactors in the modularity

analysis, identifying both intuitive and non-canonical groupings

that could not be identified by removing interactions effected by

cofactors. For example, not including the cofactors in the model

would completely isolate the oxidative phosphorylation reactions

and carbamoyl phosphate production reaction from the rest of the

metabolic network as disconnected components. Including the

cofactors allows these reactions to be placed into modules; for the

complete metabolic model, these reactions are kept together at a

height of 2 (Dataset S1). Another example of cofactor-dependent

modularity involves the association of NADH and FADH2

oxidation with different reactions in and around the TCA cycle

(Figure 9a). The partitions place NADH oxidation into a module

(ID: 15984) that also contains isocitrate and alpha-keto glutarate

dehydrogenases, which are NADH producing reactions in the

TCA cycle. Similarly, FADH2 oxidation is placed in a module (ID:

15985) containing succinate dehydrogenase, which reduces FAD+

to FADH2. The coupling between TCA cycle reactions and

oxidative phosphorylation is intuitive. However, the TCA cycle

reactions are also highly connected to reactions in glutamate

metabolism and b-oxidation, associations that may be subjectively

less intuitive. In this light, ShReD partitions reflect an emphasis on

cyclical interactions mediated by the cofactors. A third example of

an intuitive, yet non-canonical grouping involves the drug

transformation reactions. In the present study, the metabolic

model included reactions that are induced by troglitazone, a

hydrophobic anti-diabetic compound withdrawn from the market

due to severe hepaotoxicity. Module 15995 illustrates the cyclical

interactions coordinating reactions of several different canonical

pathways, including glutathione, lipid, glucose, and pyruvate

metabolism (Figure 9b). A dominant characteristic (exhibited by

seven of the nine reactions) of this module is the production and

consumption of NADPH, again underscoring the significance of

the cofactors in determining the modularity.

To examine whether the influence of the cofactors reflected the

relatively small size of the model network (comprising ca. 150

reactions), we also applied the ShReD-based modularity analysis

to a larger model of the human liver (comprising ca. 2500

reactions) [21]. The analysis again identified cofactor modules

centered on NADH and NADPH consumption and production,

similar to the smaller liver model (Figure S3, Dataset S2). Many of

the terminal modules for the larger model comprised reactions

that were grouped into analogous modules for the smaller model,

suggesting that the size of the model did not qualitatively alter the

structural organization of the metabolic network. Quantitatively,

the maximum hierarchical depth was greater for the larger

network, increasing from 7 to 16. The increased depth was

presumably due to the greater detail of the HepatoNet1 model,

which includes many additional pathways of amino acid, lipid and

nucleotide metabolism.

In conclusion, this paper presents a novel methodology for

modularity analysis that enables hierarchical partitions of

biochemical networks by preserving feedback loops and other

cyclical interactions. To the best of our knowledge, the present

study is the first to build a module detection method that focuses

on cycles or feedback loops as the key structural feature. The

present study is also the first to account for cofactors in modularity

analysis, further emphasizing the role of pathway regulation in

network modularity. Previously, studies on modularity have

generally ignored cofactors, citing methodological challenges

arising from having to place these highly connected hub

metabolites into particular modules [20,22]. It should be noted

that the current analysis, which does not weight the edges in

calculating the ShReDs, implicitly assumes that all reactions in the

network are equally engaged. Clearly, the levels of engagement

can be expected to vary across different reactions, and should

ideally be weighted appropriately, by using quantitative activity

data such as metabolic flux. For example, a high glycolytic flux

may confer a larger weight to edges representing PK regulation,

which in turn may impact the overall modularity of the network.

Moreover, cells subjected to different chemical or genetic

perturbations will likely exhibit different flux dynamics, which

would need to be reflected in the metric to obtain partitions that

meaningfully analyze the modularity of a dynamic system such as

the biological cell. A thorough examination of the role of reaction

Figure 4. Effects of the partition metric on the properties of
EGFR signaling network modules. (A) Homogeneity of modules as
a function of partition height (see text in Methods for definition of
homogeneity index). (B) Average number of cycles in a module as a
function of network depth. Error bars represent one standard deviation.
doi:10.1371/journal.pcbi.1002262.g004
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engagements in modularity analysis is beyond the scope of this

study, and warrants further work in a future study.

Methods

Network Representation
A common way to model a biochemical network using a graph

is to represent the components as vertices and their interactions as

edges. In this study, the focus is on understanding the hierarchical

and modular relationship among reactions, treating metabolites as

shared resources among modules. We therefore use a directed

graph with vertices representing reactions and edges indicating a

directional interaction between the connected reactions. Edges are

drawn between two reactions (Figure 11a) if the product of one

reaction is either a reactant (Figure 11b) or allosteric effector of

another reaction (Figure 11c). For reversible reactions, reactant-

product relationships are considered in both directions.

Shortest Retroactive Distance
We utilize round trip distance as a metric, which we call

Shortest Retroactive Distance (ShReD), to characterize the

connectivity between two vertices that interact retroactively. A

retroactive interaction exists between two vertices i and j, if and

only if there is a directional path from vertex i to j and a return path

from vertex j to i. The retroactive interaction represents a

mechanism for mutual feedback, and thus expresses interdepen-

dence. The ShReD of vertices i and j (ShReDij) is the sum of the

shortest path distance from node i to j and the shortest return path

distance from node j to i. In the example network of Figure 12,

ShReD1,3 is 3 because there are two edges along the shortest path

from R1 to R3 and there is one edge from R3 to R1. There is

another cycle connecting the two reaction vertices, which also

involves R4, R5 and R6. This cycle, however, is not the ShReD, as

its length of 6 exceeds the ShReD value of 3. For a given network

(or sub-network) a ShReD value is computed for every pair of

vertices in the network (or sub-network). To compute the ShReD

values, we first calculated the shortest distances between all pairs of

vertices using the Floyd-Warshall algorithm [23]. The resulting all-

pairs shortest path matrix was then added to its own transpose to

generate a symmetrical ShReD matrix. When there is no path or

no return path between two vertices, the ShReD value between

these two vertices is infinity. The ShReD between a node and itself

is zero. For the example network in Figure 12, the ShReD matrix

is as follows:

Figure 5. Hierarchical partitions of hepatocyte metabolic network. (A) Partitions obtained using Newman’s connectivity metric. (B) Partitions
obtained using the ShReD. Details of the reactions in the boxed modules are shown in Figures 9a and 9b. The other boxed module (ID: 15939)
contains pyruvate kinase.
doi:10.1371/journal.pcbi.1002262.g005

Figure 6. Effects of the partition metric on the properties of
hepatocyte network modules. Homogeneity index is shown as a
function of partition height. The height of the root node in the Newman
partition tree is 2, whereas the height of the ShReD tree is 7. Error bars
represent one standard deviation.
doi:10.1371/journal.pcbi.1002262.g006

Biochemical Network Modules
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ShReD~

R1 R2 R3 R4 R5 R6 R7 R8

R1 0 3 3 6 6 6 ? ?

R2 3 0 3 6 6 6 ? ?

R3 3 3 0 6 6 6 ? ?

R4 6 6 6 0 3 3 ? ?

R5 6 6 6 3 0 3 ? ?

R6 6 6 6 3 3 0 ? ?

R7 ? ? ? ? ? ? 0 2

R8 ? ? ? ? ? ? 2 0

2
66666666666666664

3
77777777777777775

ð1Þ

Partitioning Algorithm
Partitions were obtained by adapting Newman’s community

detection algorithm [18], which was modified to generate

partitions based on the ShReD metric, as opposed to simple

connectivity. An overview of the algorithm flow is shown in

Figure 13. The initial step is to find the connected subnetworks

in the parent network using a breadth-first traversal algorithm

[24], as it is possible that the parent network, represented as a

reaction centric graph, may not be connected. For the search,

the network is represented as an undirected graph, as we are

interested in identifying the connectivity of vertices, regardless

of direction. Each connected subnetwork is then partitioned into

two daughter subnetworks to maximize a ‘‘modularity score’’

while ensuring that each subnetwork resulting from a partition

retains at least one retroactive interaction, i.e. cycle. Applied

recursively, the algorithm produces a hierarchical tree of binary

partitions.

In Newman’s algorithm, the modularity score was computed as

the difference between the actual and expected number of

connections between two components. In this study, we computed

the difference between the actual and expected ShReD to

determine the modularity score. The expected ShReD between i

and j, Pij, is computed as the arithmetic mean of the average of all

non-zero and non-infinite ShReDs involving i and the average of

all non-zero and non-infinite ShReDs involving j:

Pij~
1

2

Pn
k~1 ShReDik

Di

z

Pn
k~1 ShReDjk

Dj

� �

for
ShReDik=0,?

ShReDjk=0,?

( ð2Þ

where Di and Dj are the number of non-zero and non-infinite

ShReDs involving i and j respectively, and n is the total number of

vertices in the network (or sub-network). We define a ShReD-based

modularity matrix, G, as follows:

Gij~Pij{ShReDij ð3Þ

The diagonal entries of G are set to zero, because both the

expected and actual ShReD between a vertex and itself are zero.

An entry Gij is also set to zero, if ShReDij is infinity. For the example

network in Figure 12, the average ShReD of R1 and R2 are both

4.8. The expected ShReD between R1 and R2, P12, is thus 4.8, and

G12 is 1.8. The full matrix G for the example network is shown

below. The ShReD-based modularity matrix differs from New-

man’s connectivity-based modularity matrix, which does not take into

account the direction of an interaction.

G~

R1 R2 R3 R4 R5 R6 R7 R8

R1 0 1:8 1:8 {1:2 {1:2 {1:2 0 0

R2 1:8 0 1:8 {1:2 {1:2 {1:2 0 0

R3 1:8 1:8 0 {1:2 {1:2 {1:2 0 0

R4 {1:2 {1:2 {1:2 0 1:8 1:8 0 0

R5 {1:2 {1:2 {1:2 1:8 0 1:8 0 0

R6 {1:2 {1:2 {1:2 1:8 1:8 0 0 0

R7 0 0 0 0 0 0 0 0

R8 0 0 0 0 0 0 0 0

2
66666666666666664

3
77777777777777775

ð4Þ

Defining the modularity score Q based on the ShReD-based

modularity matrix G, we wish to find a vector s, which assigns

each vertex in the network to one of the two partitioned sub-

networks to maximize Q:

Figure 7. ShReD partitions of modified hepatocyte metabolic models. (A) Metabolic network with cofactors, but no regulatory edges. The
boxed module (ID: 15982) contains pyruvate kinase. (B) Metabolic network with regulatory edges, but no cofactors. Note the absence of a redox
module coupling detoxification reactions with lipid synthesis.
doi:10.1371/journal.pcbi.1002262.g007
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Q~
X

i

X
j

Gijsisj ð5Þ

where si is an element of a vector s. Each si has a value of either

21 or 1. An increase in Q is obtained in two cases: if Gij is positive

and the vertices i and j are assigned to the same sub-network

(si = sj = 1 or si = sj = 21), or if Gij is negative and the two vertices

are assigned to different subnetworks (si = 1 and sj = 21 or vice

versa). The vector s maximizing Q can be found using spectral

partitioning methods [25] as described by Newman [18]. The

solution to the maximization problem can be approximated by the

leading eigenvector of G. For our example network (Figure 12),

the leading eigenvector of G (Equation 4) is given by v = [20.41,

20.41, 20.41, 0.41, 0.41, 0.41, 0, 0], from which s is

approximated as s = [21, 21, 21, 1, 1,1, 21, 21]. All non-

positive entries, including zero, in the eigenvector are assigned the

value 21. This partition assigns R1, R2, R3, R7 and R8 to one

module, and R4, R5 and R6 to the other module. The reactions in

the first module are not fully connected, which gives rise to two

disconnected components, one comprising R1, R2 and R3 and the

other comprising R7 and R8. In this example, a single binary

partition generated three separate modules, each consisting of a

single cycle.

In Newman’s original community detection algorithm, parti-

tioning of a subnetwork continues if the modularity score Q is

greater than zero and the leading eigenvector s of the modularity

matrix G has at least one positive and one negative element;

otherwise the subnetwork is not further partitioned. The algorithm

terminates if there is no subnetwork that can be further

partitioned. In our algorithm, we modified the termination

criterion to also check that there is a cycle in each subnetwork

resulting from a partition operation. The check for a cycle was

performed using an algorithm similar to topological sort [26]. For

a given module abstracted as a directed graph, the number of

incoming edges is computed for each vertex. A vertex with zero

incoming edges is removed from the graph along with its outgoing

edges. The number of incoming edges is then recalculated for the

remaining vertices. The process repeats until there are no more

vertices, in which case the graph has no cycles, or until there are

no vertices with zero incoming edges, indicating the presence of a

cycle. In our example, the Q score for the first partition is greater

than zero (Q = 43.2) and each resulting subnetwork contained at

least one cycle. Thus, the partitioned subnetworks are accepted as

modules and the algorithm continues by finding the connected

subnetworks in each module. The module comprising R1, R2, R3,

R7 and R8 is not fully connected, and two subnetworks are found,

one comprising R1, R2, and R3 and the other comprising R7 and

R8. Neither subnetwork can be further partitioned, as every

element in the leading eigenvector of the corresponding

modularity matrix has the same sign. Similarly, the module

comprising R4, R5 and R6 cannot be further partitioned, as every

element in the leading eigenvector of the corresponding

modularity matrix has the same sign, and the algorithm

terminates.

Hierarchical Tree of Partitions
The partitioning results are reported in the form of a

hierarchical tree annotated with several properties. Each module

is represented as a pie chart, where the size of each slice is

proportional to the fraction of reactions that belong to the

corresponding, pre-assigned canonical (textbook) grouping. The

homogeneity index of a module corresponds to the fraction occupied

by the largest slice in the pie chart. The homogeneity index

therefore ranges from 0 to 1, where a larger number indicates

greater homogeneity in terms of composition based on the

canonical group assignments. The black lines connecting the

nodes in the hierarchical tree represent ShReD-based partitions,

whereas the red lines represent the formation of components from

partitions that include disconnected components. The depth of a

module is determined as the number of black edges traversed from

the root node to the module. The height of a module is determined

as the largest possible number of black edges traversed from the

module to a terminal leaf node.

The number of cycles within a module is used to compare the

partitions obtained based on the ShReD and Newman’s

connectivity metrics. While standard algorithms exist for counting

Figure 8. Effects of regulatory edges on module properties. (A)
Number of finite ShReDs in a module as a function of partition depth.
(B) Average ShReD of a module as a function of partition depth. Error
bars represent one standard deviation.
doi:10.1371/journal.pcbi.1002262.g008
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the number of cycles in a graph [27], the run time is proportional

to the number of (non-unique) cycles. The number of cycles may

be exponential in the number of vertices, and renders cycle

counting as computationally inefficient. The cycle count is thus

reported up to 1,000 unique cycles. Any count above 1,000 is

effectively reported as 1,000. In addition to cycles, we also

Figure 9. Redox modules. Detailed composition of modules boxed in Figure 5b. (A) Coupled reactions of the TCA cycle and oxidative
phosphorylation (highlighted in bold type) metabolizing NADH and FADH2. (B) Coupled reactions metabolizing NADPH.
doi:10.1371/journal.pcbi.1002262.g009
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determined the number of non-infinite shortest retroactive paths in a

module as well as the mean ShReD of the module. The mean

ShReD of a module is calculated by averaging the corresponding

non-infinite entries in the corresponding ShReD matrix.

Models
As case studies, we examined two types of biochemical networks

that feature directed interactions and feedback loops.

Signaling model. The signaling network was reconstructed

based on a published model of epidermal growth factor receptor

(EGFR) signaling [19]. The model was downloaded as an SBML

file and cast into the form of a stoichiometric matrix based on the

directional interactions between signaling molecules defined in the

SBML file. The model consisted of 322 signaling molecules

(metabolites and proteins) participating in 211 signaling reactions.

In addition to the signaling reactions, the model includes 238

allosteric interactions between the signaling molecules and

reactions. The reactions in this model were a priori assigned to

groups based on their previously catalogued function [19]. For

example, the reactions that convert ERK1/2 and PKB/akt into

their active forms were assigned to the MAPK cascade and PIP

signaling, respectively. This initial grouping, which reflects

historical knowledge of signaling modularity, provided a basis for

comparison between biological knowledge-driven, canonical

associations versus partition-driven, systematically obtained

network modules.

Metabolic model. A stoichiometric network model of human

hepatocyte metabolism was reconstructed from the KEGG

reaction database and further augmented by the addition of

xenobiotic transformation reactions, as well as regulatory

interactions mediated by allosteric effectors. The model

comprised 159 reactions, 146 metabolites, and 61 regulatory

interactions. The xenobiotic transformation reactions were added

to describe the metabolism of the anti-diabetic compound

troglitazone (TGZ), including steps needed to supply conjugation

substrates such as glutathione (GSH). The regulatory interactions

in the model reflect known allosteric effects of metabolites on

reaction activity as described in a standard biochemistry textbook

[28]. Information about the allosteric effects of metabolites was

organized into a regulatory matrix, where the columns and rows

represented the effector metabolites and reactions regulated by

these metabolites, respectively. The inhibition or activation of a

reaction j by an allosteric effector i was denoted by a negative one

(21) or positive one (+1), respectively, in the matrix element (i, j).

For all other cases where there were no known allosteric

Figure 10. Effects of regulatory edges on module properties.
(A) Number of finite ShReDs in a module as a function of partition
depth. (B) Average ShReD of a module as a function of partition depth.
Error bars represent one standard deviation.
doi:10.1371/journal.pcbi.1002262.g010

Figure 11. Network representation. (A) A reaction-centric repre-
sentation of two different cases (B and C) where one reaction is
upstream of another. (B) Reaction R1 produces a metabolite M2 that is
consumed by reaction R2. (C) Reaction R1 produces a metabolite M2

that is an allosteric effector of the enzyme catalyzing reaction R2.
doi:10.1371/journal.pcbi.1002262.g011
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interactions, a zero (0) was entered into the corresponding matrix

element. For example, the TCA cycle intermediate citrate

allosterically inhibits phosphofructokinase I (PFK) to regulate the

flux of glucose-derived substrates into the TCA cycle. In the

regulatory matrix, this feedback inhibition is denoted by the value

(21) in the matrix element corresponding to (citrate, PFK). Similar

Figure 12. Example illustrating ShReD-based network partition. (A) The example network comprises 8 reactions and 1 allosteric inhibition.
(B) Graph representation of the reaction-to-reaction interactions in the example network.
doi:10.1371/journal.pcbi.1002262.g012

Figure 13. Schematic illustrating the flow of the partitioning algorithm.
doi:10.1371/journal.pcbi.1002262.g013
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to the EGFR signaling model, the reactions of the metabolic

model were assigned into one of the following groups based on

their canonical memberships as defined in standard biochemistry

textbooks: transport (TRANS), detoxification (DETOX), sugar

metabolism (encompassing glycolysis, gluconeogenesis, pentose

phosphate shunt, and glycogen metabolism) (GLYCO), pyruvate

metabolism (PYRU), TCA cycle (TCA), urea cycle (UREA),

oxidative phosphorylation (ROP), lipid metabolism (LIPID),

amino acid synthesis and degradation (AA), and ketone body

production (KET). To test the impact of allosteric regulation on

modularity, separate graph models were constructed by either

omitting regulatory edges altogether, or just removing the

cofactors (i.e. ATP, NADH and NADPH), which represented

the majority of allosteric effectors. The cofactors were removed

from the stoichiometric network model by deleting the

corresponding rows of the stoichiometric matrix, which

eliminated the regulatory edges reflecting cofactor-driven

dependencies between reactions.
HepatoNet1. To investigate the effect of scale, a more

detailed graph model of human liver metabolism was

constructed from a previously published model (HepatoNet1)

[21]. The HepatoNet1 model was downloaded as an SBML file

and cast into the form of a stoichiometric matrix based on the

reaction definitions in the SBML file. The model comprised 2539

reactions and 777 metabolites. This model was used as is, without

further addition of allosteric regulatory interactions.

Supporting Information

Dataset S1 Partition report for the hepatocyte metabolic model.

The report includes the reaction definitions, regulatory interac-

tions, and stoichiometric matrix for the model.

(XLSX)

Dataset S2 Partition report for the Hepatonet1 model. The

report includes the reaction definitions and stoichiometric matrix

for the model.

(XLSX)

Figure S1 Network of terminal modules from the partitioning of

the EGFR signaling network using Newman’s connectivity (A) and

ShReD (B). The interactions between modules represent interac-

tions between reactions in the respective modules. The size of a

module is proportional to the number of reactions in the module.

As the networks correspond to the terminal nodes of the respective

partitioning trees, hierarchical information can be inferred from

the presence of multiple modules assigned to the same canonical

signaling pathway. For example, panel B shows multiple GPCR

transactivation modules (dark blue) of varying sizes. In the same

panel, MAPK cascade (light blue) is present as a component of a

larger composite module with multiple canonical signaling

pathways.

(TIF)

Figure S2 Network of terminal modules from the partitioning of

the hepatocyte metabolic network based on both Newman’s

connectivity metric (A) and ShReD (B). The interactions between

modules represent interactions between reactions in the respective

modules. The size of a module is proportional to the number of

reactions in the module.

(TIF)

Figure S3 ShReD based partitioning of Hepatonet1 model.

Boxes highlight modules centered on NADH (module ID: 253956)

and NADPH (module ID: 254789) consumption and production.

The two modules share a number of reactions with identical main

(carbon) reactants but different cofactors. For example, malate

oxidation in the mitochondria (r0057) is in the NADH module,

whereas malate oxidation in the cytosol (r0058) is in the NADPH

module.

(TIF)
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